Optimization of Bicomponent Electrospun Fibers for Therapeutic Use: Post-Treatments to Improve Chemical and Biological Stability
نویسندگان
چکیده
Bicomponent electrospun nanofibers based on the combination of synthetic (i.e., aliphatic polyesters such as polycaprolactone (PCL)) and natural proteins (i.e., gelatin) have been extensively investigated as temporary platforms to instruct cells by the release of molecular/pharmaceutical signals for the regeneration of several tissues. Here, water soluble proteins (i.e., gelatin), strictly embedded to PCL, act as carriers of bioactive molecules, thus improving bioavailability and supporting cell activities during in vitro regeneration. However, these proteins are rapidly digested by enzymes, locally produced by many different cell types, both in vitro and in vivo, with significant drawbacks in the control of molecular release. Hence, we have investigated three post-processing strategies based on the use of different crosslinking agents-(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (EDC), glyceraldehyde (GC), and 1,4-butanediol diglycidyl ether (BDDGE)-to delay the dissolution time of gelatin macromolecules from bicomponent fibers. All of the qualitative (i.e., SEM, TGA) and quantitative (i.e., Trinitrobenzene sulfonate (TNBS) and bicinchoninic acid (BCA) assays) morphological/chemical analyses as well as biocompatibility assays indicate that EDC crosslinking improves the chemical stability of bicomponent fibers at 37 °C and provides a more efficient encapsulation and controlled sustained release of drug, thus resulting in the best post-treatment to design bio-inspired fibrous platforms for the extended in vitro release of drugs.
منابع مشابه
Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering
Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One sca...
متن کاملRelease of antibiotics from electrospun bicomponent fibers
Biocompatible nanofibers that are capable of adapting to the physiological conditions of the human body have become increasingly important for clinical applications in recent years. Electrospun fiber mats offer particular advantages due to their large surface area and their sorption/release properties. If loaded with drugs, delivery properties can be tailored to a specific release rate. This re...
متن کاملMetadata of the chapter that will be visualized in OnlineFirst
Electrospinning is a simple and versatile method to produce fibers using charged polymer solutions. As drug delivery systems, electrospun fibers are an excellent choice because of easy drug entrapment, high surface area, morphology control and biomimetic characteristics. Various drugs and biomolecules can be easily encapsulated inside or on fiber surface either during electrospinning or through...
متن کاملA novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application
Objecttive (s): Polyvinylalcohol (PVA) is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinn...
متن کاملTHE EFFECT OF COOPERATIVE CHARGING ON FILTRATION PROPERTIES OF ELECTRICALLY DISSIMILAR ELECTROSPUN NANOFIBERS OF POLYMERS 6.1 Chapter Summary Electrical charging and residual charge decay of electrospun nonwoven webs
6.1 Chapter Summary Electrical charging and residual charge decay of electrospun nonwoven webs comprised of two electrically dissimilar polymers were studied in an effort to investigate their filtration properties. Electrospinning of polystyrene (PS) and polyacrylonitrile (PAN) was performed by utilizing three different approaches to produce thin fibrous webs: PAN and PS were electrospun indivi...
متن کامل